
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE
Form Approed

REPORT DOCUMENTATION PAGE OMB NO.00%8

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY' 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATIONfDOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
HDL-TR-2161

B. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Harry Diamond Laboratories(faplcbe

I SLCHD-ST-AP

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

2800 Powder Mill Road
Adelphi, MD 20783-1197

B4. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicabe)

U.S. Army Laboratory Command AMSLC

Oc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT "TASK WORK UNIT2800 Powder Mill Road ELEMENT NO. NO. NO. CCESSION NO.

Adelphi, MD 20783-1145 P6.2.H25 AH25

11. TITLE (Include Security Classification)

The Potential and Electric Fields of a Conducting Sphere in the Presence of a Charged Conducting Plane

12. PERSONAL AUTHOR(S)

Clyde A. Morrison
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT

Summary FROM Aug 88 TO Nov 88 June 1989 ,32
16. SUPPLEMENTARY NOTATION

HDL project: 142914, AMS code: 612120.H250012
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP I Electrostatics, spherical harmonics

19, ABSTRACT (Continue on reverse if necessary and identify by block number)

The solution is given to Laplace's equation for a conducting sphere above a ground plane. The solution Includes the
presence of a uniform electric field perpendicular to the ground plane. The arbitrary constants in the solution are deter-
mined by applying the boundary conditions on the plane and on the sphere. Formulas are given for the evaluation of the
potential and electric fields at an arbitrary field point. All the resulting formulas are expressed in a style suitable for com-
putation. The computational results will form the basis of a future comparison report. /

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
DUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 03 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Cl de A. Morrison (202) 394-2042 1 SLCHD-ST-AP

DD Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified



Foreword

Thirty-some years ago Nick Karayianis and I tackled a problem in
electrostatics which was similar to the one discussed here. At that time, I
was fresh from a course in special functions taught by E. D. Rainville at
the University of Michigan and I imparted my newly acquired wisdom to
Nick. A few years later, Nick finished his doctorate at Indiana University
and returned the favor by teaching me Racah algebra and angular momen-
tum theory. In that exchange, I received more than I gave. During the
course of "breaking the neck" of this problem, I frequently thought of our
earlier problem and missed Nick's able guidance. This report would have
been much better with his assistance.
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1. Introduction

In this report we derive expressions for the electric potential and electric
fields produced by a charged conducting sphere above a conducting plane.
We were unable to find the problem done (potential and electric fields at
an arbitrary field point) in a number of standard textbooks on electro-
statics [1-7].* Further, textbooks on spherical harmonics did not give the
solution [8-10]. Also, a preliminary search of the literature revealed a
number of related problems, of which two are cited here [11, 12]. These
latter references approach the problem using bipolar coordinates and refer
to a number of internal memoranda which are difficult to obtain.

In most of those references where the geometry of the problem was simi-
lar to the one considered here, the discussion centered around finding the
capacitance of the system. In a few references, the problem of the electric
field at a very particular point (for example, the surface of the sphere) was
considered. Here we are interested in finding the potential and, conse-
quently, the electric fields at an arbitrary field point. Thus the possibility
of finding the problem done in a textbook or monograph is rather slim, but
an extensive literature search would quite possibly find the problem. Since
an extensive search would take considerable time, we decided to do the
problem while the search was, underway, and as of this date we have not
located a usable solution. In our analysis, we use spherical coordinates
throughout.

2. Solution to Laplace's Equation

We consider a conducting sphere of radius a, at potential V, located at a
height h above a conducting plane. The potential of the plane is chosen to
be zero. To simplify the problem, we replace the conducting plane by an
identical sphere at potential -V, located at -h below the plane. The coor-
dinate system is shown in figure 1.

'References are listed at the end of this report.
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Figure 1. Coordinate
systern of the two
spheres. h-0z= h

Z=O

,O(r) =0

R

z=-h

We consider the upper sphere first. The two linearly independent solutions
to Laplace's equation (V20 = 0) in a coordinate system centered on the up-
per sphere are

P (Cos 0) 

1)

and
P. (cos 8) , (2)

where n = 0, 1, 2, ..., and the Pn(cos 0) are the Legendre polynomials [13].
For convenience, we list the first few Legendre polynomials:

Po(cos 8) = 1 ,
P1(cos 8) = cos 0
P 2(cos 8) = (3 cos 20 - 1)/2
P3 (cos 8) = [(5 cos28 - 3) cos 0]/2
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and the general relations,

p/(-cos 9) = (-l)YPn(cos 9)

nPn(cos 0) = (2n - 1) cos OP, 1 (cos 0) - (n - 1)Pn.2(cos 0)

This last relation is used recursively to generate P,(cos 0) for n > 2 using
the n = 0 and n = 1 polynomials as initial values.

The solutions given in equation (1) diverge for large r and are discarded.
The solutions in equation (2) have no singularities in the region a < r < -
and are retained. Similarily, the retained solutions for the lower sphere are

1~ q P. (Cos Nf) (3)

The potential associated with the uniform electric field is given by

*E = -Ez . (4)

The general solution for the potential is given by multiplying the solutions
given by equations (2) and (3) by arbitrary constants and summing over n
to obtain

An (cos 9) P,(cos )P. (cos )Ez . (5)

The problem then is to evaluate A. and B. by using the boundary
conditions

S= V, for r=a,
0=-V, for R=a, (6)

and
=0, for z=O

In equations (2) through (6) we have avoided introducing the arguments in
the potential 0 because the particular variables will depend on which
boundary condition is considered.
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3. Evaluation of the Constants A. and B n

The simplest boundary condition is the last of equation (6). On the plane
z = 0, we have r = R and 0 = 7c - V' so that

Cos 0 = -co

and
pn(- cos V = (-1)n Pn (cos X')

Then from equation (5) we have

0= -  [(1)"A. +B, rP + (Cs ;f (7)

and since each Pn(cos V)/r n+1 is linearly independent for each n, we have

Bn = (-1)n+ l An . (8)

To obtain explict values for An we shall use the first boundary condition in
equation (6). In order to do this we need the expansion of Pn(cos Alf)/ Rn+1

in terms of Pn (cos 0). This expansion is given in a number of places [14,
15] in very general form, and the result is derived heuristically in appen-
dix A. Since we are to use the first boundary condition in equation (6), we
use the expansion given in equation (A- 12) of appendix A which, with ob-
vious changes, is

k+ s =V (-I)n r"
ksn (2hI n+ k + P" (cos 0) , (9)

where ( is a binomial coefficient.

Substituting equation (9) into equation (5) gives

W,0) A, +X Bk(-1)n +k( 2 h) +k+ P (cos 0)

(10)
-E[h + rP, (cos 0)]
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where we have written

z h + r cos 0

h + rP(cos 0)

From the first of equation (6), the potential at the surface of the upper
sphere, 0(a, 0) = V, we obtain

V = I --.- + I(-1) n + k + 1 Ak P. (Cos O)[ +1 )k +(2h) n + k + 1 n(II)

-E[h+aP,(cos0)] ,

where we have used equation (8) to eliminate Bk in favor of Ak. Since the
Pn(cos 0) are orthogonal, for each n we can write

V = Uo - X 1 (_),)k Uk - Eh,
k

0=U1 -, (-))k+ I(k+ 1)U -EaItk )

and (12)

0= U. - X)k+n Uk for n >1k

In equation (12), Un and X are defined by

Un =

and

11



The system of equations given in equation (12) can be written compactly
in matrix form as

F=(1-XG).U , (13)

where F is the column vector with components

Fo = V+Eh, (14)

F1 =Ea
(15)

F,-O,n> l

I is the unit matrix, with elements fi~,Gis the symmetric matrix with

components
G ,=(- n +M), (16)

---4

and U is the column vector with components Un given in equation (12).

The formal solution to equation (13) is

U=B•F , (17)

where B is

4]' Q (- X-'
(18)

=1 + XG + X 2 G2 + 3 G3 +...

The result given in equation (18) can be quite deceptive in that not all the
A dependence is explicit; the matrix G also contains X as shown in equa-
tion (16). All the constants (V, a, E, and h) are contained in F0 and F1, and
equation (17) determines each Un in terms of these constants. Also, since
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B is symmetric, equation (17) can be written U= =FT. B, if convenient (FT

in the transpose vector - a row vector).

For a given potential, V, on the sphere, the charge Q on the sphere can be
determined* from equation (12). By Gauss' law, the charge is determined
by Ao or Ao  Q (and therefore (Uo = Qia)). Hence,

Q =BoF0 +BoFl,a

and from (14),

Q =Boo(V+Eh)+BoiEa . (19)
a

Thus, a knowledge of the two components of B determine the charge on
the sphere. We shall discuss equation (19) further when we consider the
case when the charge on the sphere is fixed.

4. The Potential and the Electric Fields

Having determined the constants U, by equation (12), it is necessary to
determine the potential 4 and the field components Er (= --Do/r), and
Ee (= -a/raO) using the U,,. Substituting U,, for A, and Bn = (-1)' 'An

into equation (10), we have

= [( U X I Gn,> Um Pn - E [h + r (PI)] (20)

Er = (n+1) U +n (r YG,mUm (21)ma

EeL=Y ) 'U. I~f ? Gnm UmJT. ETI (22)

where

T.= dO

*In MKS units replace Q by Qi(4tOE), where 471E o = 1.112650 x 10- 12 F/r.
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From equation (13) we can write ? Z G, U. = U. - F,,, and using this re-
suit in equations (20), (21), and (22) we can express these equations in
terms of U, and Fn.

We now let

Xn=[- U. ,n>0 , (23)

and

Yn = [(n +1) - + n--,n>O. (24)

Zo is set to zero since To = 0 (see eq (27)),

Z0 = 0 and

r a , n>0 (25)

Using equations (23), (24), and (25) in (20) through (22), we have

O(r, O) = X(r) * P(O)

Er (r, 0) = Y(r) * P(0) (26)

E9 (r, 0) = Z(r) • T(O)

for r < 2h.
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In equation (26), the components of P are the Legendre polynomials and

the components of T are -dP,dO. The first few values of T are

To =0,

T1 = sin 0,

T2 = 3 sin 0 cos 0,
and the recursion relation is (27)

T, = n(P,.i - cos 0 P. /sin 0

The above results are for r < 2h; for r > 2h we have to use the expansion
for Pk(cos 4)/Rk+l in terms of Pn(cos 0) given in appendix A in equation
(A-13). The solution for U,, given in equation (17) still holds, so we can

write

--I [U,, - W,, 1 + P - Ea ( + r P (28)
n a

where

1 (mn ) UnW. I X_- U

and the field components are given by

( '+2E, (n + 1)[U,. - Wn ]Ia P" +EPl (29)

and

Ee =F[Un -W] ]( n -ET, (30)
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In equations (28), (29), and (30), we let

X6=-Eh ,

X; [U,. - W,], n > 1,

Y6 =0

( rE a
Y.' =(n+l1) (U. -V W.) ,n>1l

and

Z6 =0,II
z = (U1 - W a E (33)

z;= (U.--W.)! n > I

Then, as in equation (26), we have

= X'(r)P() ,

Er = Y'(r) - P(0) , (34)

Ea = Z'(r) - T(0) ,

for r > 2h

The P(O) and T(O) in equation (34) are the same as in equation (26).
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The results given in equations (26) and (34) constitute a solution for the
entire region a < r < - and 0 < 0 < it. The procedure consists in finding
the coefficients U,, for given V, a, h, and E by using equation (17). After
this, we find the components of X (X'), Y (Y'), and Z (Z') for r < 2h (r >
2h) using equation (26) (eq (34)).

As discussed following equation (19), when the charge Q on the sphere is
fixed, it is necessary to determine V from equation (19) as

V = Q -Eh -B o' d(5
aBoo - Ea . (35)

In order to obtain V, we need to evaluate Boo and B01 , and the result from
appendix B for general B0n is given as

Bo, = So,, + (-X) I XP (A n [B-24](Ap,)nAp =Ap_ 1 - .Ap_ 2 [S-20]

where
AP = AP- 1 - %2AP- 2  [B-20]

with
A0=A 1 =l . [B-21]

The values of Boo and B01 can be calculated using these results.

The solution to the problem where the charge Q is fixed is then obtained
by determining V by using equation (35). We then insert this V into equa-
tions (14) and (15) to determine F and continue as in the case in which V
is given (eq (26) for r < 2h; eq (34) for r > 2h).

5. Conclusion

The results derived here constitute a formal solution to the potential and
the fields for a conducting sphere at a given potential V (or charge Q) at
height h above a charged conducting plane. Preliminary calculations show
that the potential and fields are sufficiently represented by equations (26)
and (34) even for a modest number of terms (-10). However, the region
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near r = 2h is not well represented by these equations. The reason for this
can be traced back to equations (A-12) and (A-13). The series represented
in these equations become conditionally convergent near r = 2h and
diverge at r = 2h. If it is important to evaluate equations (26) and (34) in
this region, either analytical methods or computational methods will have
to be devised. One way of handling this problem is to compute, at values
of 0, a number of values for O, Er, and E. to be evaluated for r < 2h and

r > 2h. An interpolation formula is used in the immediate vicinity of r =
2h. The results given in equations (26) and (34) will be used in a follow-
ing report where we calculate 0(r, 0), Er(r, 0), and Ee(r, 0) for a number

of interesting cases.
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Appendix A. - Expansion of Pk(cos xv) / Rk+l in terms of
I.(cos 0)

In the main body of the report, we used the formal expressions from Judd1

and Morrison 2 for the expansion of Pk(cos 4y)/R k" in terms of Pn(cos 0).
Because of the very general nature of the expansion it is useful to have an
independent check. To do this, we consider the expansion (from eq (13))

= (-1)'+ P.(cos0) r<x (A-1)

= (-I) '? P.(Cos 0) r>x, (A-2)

where

R =Nf; + r2 + 2xr cos 6 (A-3)

and

x+rcosO=Rcosv. (A-4)

(In the final result we let x = 2h.)

Our method consists of taking successive derivatives of I[R with respect
to x and using (A-4) to cast the result into the desired form. First consider

=- L. (A-5)

where
dR

1B. R. Judd, Angular Momentum Theory for Diatomic Molecules, Academic Press, New York (1975).
2 C. A. Morrison, Angular Momentum Theory Applied to Interactions in Solids, Springer-Verlag (1988).
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From (A-3) we have

x +r cos I
R

and using (A-4) we obtain R. = cos Nf. Since P (cos p) = cos V, we have

=i R 2 (A-6)

Repeating this process we obtain

d 1 2P2(cos )2P(SI (A-7)

d(3  -6 P 3 (cosW)
7 R' 4(A-8)

In obtaining these results, it is convenient to express all higher derivatives
in terms of Rx:

R,, =(I - RX)IR,

R. = (3 R2 - 3 R&)IR2

This procedure keeps the size of the algebraic expressions under control.

On the right side in expression (A-i) we consider only the x-dependent
part as
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1 1

Sk -(A -9)

-d 2 (1 +1)(1 +2) 1-
dx2 (i> ) I

A 3 Ql+ 1)(1/+ 2)(I + 3)
dl (i 

s 1
and consider the binomial coefficient ( k which is 1, 1 + 1,

(I + 1)(1 + 2)/2, (1 + 1)(1 + 2)(l + 3)/6 for k = 0, 1, 2, and 3, respectively.
So we write

d- " = (- 1)k k! CsRI+I (A-10)

and

d'A (1i .lk k \ I

thus, with x set to 2h, we obtain

Pk (Cos VI) = 1 (-1)'1 +k - P, (cos 0) r <x. (A-12)
R+I 1=0 CI X +I

For x < r in (A-5) the result corresponding to equation (A-11) becomes

d 1= k! I xI-ci ,( Y-k

d. ' (I -k)x

with k < I. Then we obtain, after the substitution x = 2h,

Pk (cos V)tk(2h)'-" W lk)
PA (c-s P) (Cos 0) , r > 2h. (A-13)

RA I - k I )+ L ( co
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Appendix B. - Fixed Charge on the Sphere

When the charge on the sphere is specified rather than the voltage, it is
useful to write the boundary conditions given in equations (14) and (15)
as

U =BooFo +Bo F, (B-)
U=Boo(V-Eh)+BolEa

and by Gauss' law the charge on the sphere, Q, determines A0 ; that is,

Ao =Q . (B-2)

Then from equation (12), Uo = Qia and from (B-i) we obtain*

V = [Qla - (Booh + Bola) E]Bo, (B-3)

and we notice that when E = 0 we obtain

Q=cV, (B-4)

where c = aBoo.

As X -- 0 (h -- o) we know that Boo 1 and the capacitance becomes c =
a, which is the usual expression for the capacitance for a sphere of radius
a. From equation (B-3) we see that it would be convenient to evaluate the
potential of the sphere and use the results in the calculation of the poten-
tial E, and E., as is done for the case when V is given.

In equation (18) we defined the matrix B as

8_ = (_ - X)')-  , (B-5)

which we can expand as

B = 1 + XG + X G2 + .... Pq,+... , (B-6)

*If we are using MKS units we replace Q/a by Q/{47rfoa).
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and we need Bo. for n = 0 and 1. For the first few terms in (B-6) we have

Bo = 8r, + ,o, + X2 (G2)o. + 3 (G3)og+... , (B-7)

and for a given term

(GI) o, = Gok (G/ ) , (B-8)
k

and forp =2

(G2 )NY, Gok GA,. (B-9)

k

Using

in (B-9),

(G2 )o, = (-X)" X2 x~ + n) (B-10)

since

Go= ()k

The sum in equation (B-10) can be done and is given by

- (I (-y)R+I (B-11)

where y < 1. (This value of y is much larger than we need. In our case, the
largest value of y is 1/4.)
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Using (B-11) in equation (B-10) we obtain

(G2)o. =  ) ( - ,+(12)

Extending this result to the next term gives

(G3 )o. =I (G2)otG ,
k

(B-13)
X2- , kk 2 )  k

and from equation (B-1 1) we get
G3 (-X)" VI- ),

G°. = (1 _2 -X 2 ),+' (B-14)

We have written the denominators in (B-14) in the particular form so that
if we let the denominator in (B-13) be A2 and the denominator in (B-14)
be A3, we have

A3 = A2 _ ;(2 (B-15)

For

(G )ow (G3 )ok G1. (B-16)

we have

(G4) o.=(Ar X2 A2 (k+n (B-17)A3  3k ~k)(-

and from equation (B-i 1),

7An(G4 ),=(-) A 3 R ,A , (B-18)

27



If we now let

A 4 = A3 -X
2 A2 , (B-19)

A'3
we get (G 4 )0 = (-A)"

The result in (B-19) suggests the form

A, = At,_1 _ X2A..2 ,(B-20)

with

A0= 1

and (B-21)

Al =1

an assumption consistent with A2 and A3 given above. To check the result,
we calculate (GP)on using (B-20). That is,

(GP )o. I (GP-' )o, G.

(GP)o (X) (Ap- )f , (B-22)

and with the result given in (B-20) gives

G& = (-X) (AP. 1  (B-23)
(Apv)n+1
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Then with the result of (B-23) substituted into equation (B-7) we obtain

B( = , + ()" X IA+P (B-24)P1 (Ap) n+1 P

and this result with the AP given by the recursion relation in (B-20) gives a
convenient form for computation of Boo and B01 for use in equation
(B-3) to determine the potential of the sphere.

It would be nice, from an analytic point of view, to be able to calculate
Bn from (B-6) by calculating each power of G directly. However for

(G2),. we have

(02 ). = ()k +k +m) (B-25)

but we have not been able to do the sum in closed form. KarayianisI has
shown that

,.0 k k,~ 9

which is Euler's transformation for the hypergeometric function
F(a, b; c; A2) given by Rainville2 and does not appear to be capable of fur-
ther simplification.

'Nick Karayianis, Certain Summations Involving Binomial Coefficients and Their Relation to Dyson's Conjecture,
Harry Diamond Laboratories, HDL-TR-1217 (April 1964), 7.
2E. D. Rainville, Special Functions, MacMillan, New York (1960), Ch 10.
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